Salmonella enterica Serovar Typhimurium Slows Down to Dodge Antibiotics
نویسنده
چکیده
Today, widespread antibiotic resistance means bacterial infections pose a serious threat to human health. Of course, not all infections are lethal; for example, many people infected by the pathogenic Salmonella enterica serovar Typhimurium (S. Tm.) experience only a bout of diarrhea. However, some people develop ‘‘complicated’’ S. Tm. infections, in which the bacteria spread systemically and provoke life-threatening disease. These infections are aggressively treated with potent antibiotics such as the fluoroquinolone ciprofloxacin, but sometimes even a full course of ciprofloxacin treatment (5–7 days’ duration) fails to fully eradicate the bacteria from the body. Therefore, upon cessation of antibiotic treatment, patients experience relapses of the infection. It’s unknown how or why this occurs, so Patrick Kaiser, Roland Regoes, WolfDietrich Hardt, and colleagues studied the mechanisms of complicated S. Tm. relapses in their paper published this month in PLOS Biology. To explore S. Tm.’s response to antibiotic treatment, Kaiser and colleagues studied the course of infection in C57BL/6 mice. These mice develop diarrhea and systemic infections resembling complicated S. Tm. cases in humans. And, just as in humans, the animals’ symptoms improve with ciprofloxacin treatment, but relapse upon withdrawal of the antibiotic. The authors’ experiments showed that high doses of ciprofloxacin treatment quickly (within three hours) eradicated bacteria from the animals’ gut lumen. The antibiotic also quickly reduced bacterial levels within a pouchlike region of the gut called the cecum, and within the lymph node associated with that tissue (the cecum draining lymph node, or cLN). But within two hours of treatment initiation, the rate of bacterial killing in cecal tissue and the cLN was observed to drop precipitously. As a result, viable S. Tm. cells were still present after ten days of treatment, with the highest bacterial concentrations in the cLN, but with bacteria also detectable in other tissues including the cecum and the spleen. Kaiser et al. theorized that these bacteria could be responsible for disease relapse. In support of this idea, they found that S. Tm. bacteria isolated from the cLN of ciprofloxacin-treated mice were still virulent and could establish infections when transferred into new mice. Further experiments showed that, following ciprofloxacin treatment, viable bacteria were found specifically inside ‘‘classical’’ dendritic cells, but not in another cLN cell type, the interstitial dendritic cells. As S. Tm. numbers in ciprofloxacin-treated cLN also changed in concert with the size of the classical dendritic cell population, the authors hypothesized that bacteria living inside dendritic cells form a reservoir that can reinstate infection upon withdrawal of the antibiotic. But how do these bacteria survive antibiotic treatment long enough to cause relapse? Prior studies had shown that ciprofloxacin quickly kills S. Tm. cells in culture, and also that it easily accesses and penetrates body tissues. In fact, the authors’ own control experiments confirmed that ciprofloxacin was able to reach the cLN and penetrate the cells within it, showing that the bacteria were not simply evading exposure to the antibiotic. This led Kaiser and colleagues to investigate the possibility that S. Tm. had instead become resistant to ciprofloxacin. Such resistance could arise from genetic changes that confer permanent partial or full resistance to the antibiotic, but S. Tm. cells isolated from ciprofloxacintreated animals remained fully susceptible to ciprofloxacin when removed from the animal and grown in culture. Therefore, the researchers suspected that the bacteria’s antibiotic resistance was not due to genetic changes, but was instead attributable to a phenotypic adaptation. The literature indicated that many bacterial species can become tolerant to antibiotics by switching to slow rates of growth. To find out whether S. Tm. also acquires tolerance through slow growth rates, Kaiser et al. constructed a population dynamics–based simulation for cLN bacterial growth and compared its predictions to data from actual infections. This approach, and subsequent experiments tracking plasmid retention in S. Tm., demonstrated the existence of a slowgrowing subpopulation of S. Tm. cells in the cLN. Ultimately, the authors concluded that such slow-growing cells, living Image of a cecum draining lymph node (cLN) from a mouse infected with S. Tm. and treated for two days with ciprofloxacin. Green fluorescence marks the ‘‘classical’’ dendritic cells present in the cLN. doi:10.1371/journal.pbio.1001794.g001
منابع مشابه
Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals
Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...
متن کاملمقایسه پلیمورفیسم ژنومی و ارتباط ژنتیکی سویههای بالینی سالمونلا انتریکا سرووار تیفی موریوم در استان کرمان به روش ERIC- PCR و Box-PCR
Introduction: Salmonella is one of the most important causes of gastroenteritis in humans. Salmonella enterica Serovar Typhimurium has many hosts in addition to humans, and its prevalence in the community is high. The aim of the study was comparing the genetic diversity of Salmonella enterica serovar Typhimurium isolated from human fecal samples by both of ERIC-PCR and BOX-PCR method. Methods:...
متن کاملDetection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR
Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and i...
متن کاملEffect of Electron Beam Irradiation on Survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in Minced Camel Meat during Refrigerated Storage
Background: Electron beam irradiation is one of the effective ways to control food-borne pathogens. We evaluated the effect of electron beam irradiation on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Thyphimurium in minced camel meat during refrigerated storage. Methods: The meat samples were inoculated with E. coli O157:H7 and S. enterica serovar Thyphimurium and then...
متن کاملMolecular Detection of Salmonella enterica Serovar Typhimurium in Ready-to-Eat Vegetable Salads Consumed in Restaurants of Tabriz, North-West of Iran
Background: In recent years, food-borne outbreaks have been increased by consumption of raw fruits and vegetables contaminated with bacterial pathogens like Salmonella spp. in many countries. This study was designed in order to molecular detection of Salmonella in Ready-to-Eat Vegetable Salad (REVS) consumed in restaurants of Tabriz, North-West of Iran. Methods: In this cross-sectional study, ...
متن کاملComplete Genome Sequence of Salmonella enterica Serovar Typhimurium Myophage Mushroom
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of foodborne illness worldwide. Over the past two decades, strains resistant to antibiotics have begun to emerge, highlighting the need for alternative treatment strategies such as bacteriophage therapy. Here, we present the complete genome of Mushroom, an S. Typhimurium myophage.
متن کامل